10 Easy Steps To Check Ignition Coil With Ohm Meter

10 Easy Steps To Check Ignition Coil With Ohm Meter
Ignition coils are important parts of a car’s engine, and they can fail over time. If you’re having trouble with your car’s ignition, it’s important to check the ignition coil to see if it’s the cause.

Checking an ignition coil is a relatively simple process that can be done with an ohmmeter. An ohmmeter is a tool that measures electrical resistance. When you connect an ohmmeter to an ignition coil, it will measure the resistance between the primary and secondary windings of the coil. The resistance should be within a certain range, which will vary depending on the make and model of your car. If the resistance is too high or too low, it could indicate that the ignition coil is faulty.

To check an ignition coil with an ohmmeter, follow these steps:
1. Disconnect the negative battery terminal.
2. Remove the ignition coil from the engine.
3. Connect the ohmmeter to the primary windings of the coil.
4. Read the resistance on the ohmmeter.
5. Compare the resistance to the specifications for your car.
6. If the resistance is too high or too low, replace the ignition coil.

Determining Proper Ignition Coil Resistance

Ignition coils are crucial components in the ignition system, transforming low voltage electricity into high voltage to ignite the spark plugs. If the ignition coil fails, it can cause the engine to misfire or even stop running. Therefore, it’s essential to know how to check ignition coil resistance to ensure it’s functioning correctly.

Each type of ignition coil has specific resistance specifications, and deviation from these values indicates potential issues. Consulting the vehicle’s repair manual or examining the coil’s technical data sheet will provide the correct resistance measurements for your specific coil.

It’s important to note that resistance measurements can vary depending on the temperature of the coil. Therefore, it’s recommended to allow the coil to cool before performing the test and compare the readings with the manufacturer’s specifications at the same temperature.

How to Determine Proper Ignition Coil Resistance

1. Disconnect the ignition coil: Locate the ignition coil and disconnect the electrical connector. This step is crucial for safety, as working on an energized coil can result in electrical shock.

2. Set up the ohmmeter: Turn on the ohmmeter and set it to the lowest resistance scale. This will provide the most accurate readings.

3. Touch the probes to the terminals: Hold the ohmmeter’s probes firmly against the terminals on the ignition coil. One probe should be connected to the positive terminal, and the other to the negative terminal.

4. Read the resistance: Observe the ohmmeter’s display to determine the resistance value. Compare this value with the manufacturer’s specifications for your specific coil.

If the measured resistance falls within the specified range, the ignition coil is likely functioning correctly. However, if the resistance is significantly higher or lower than expected, it indicates a potential problem with the coil and further diagnosis is required.

Measuring Primary Resistance Using an Ohmmeter

An ohmmeter is a device used to measure the resistance of an electrical circuit. It can be used to test the ignition coil’s primary resistance, which should be within a specified range for the coil to function correctly. Here’s a detailed guide on how to check the primary resistance of an ignition coil using an ohmmeter:

  1. Gather the necessary tools: An ohmmeter, a spark plug wire, and a pair of pliers.
  2. Disconnect the spark plug wire from the ignition coil: Using the pliers, gently pull the spark plug wire from the coil terminal.
  3. Set the ohmmeter to the correct setting: Most ohmmeters have a dial or switch that allows you to select the resistance range. Set it to the lowest resistance range, typically 0-200 ohms.
  4. Connect the ohmmeter leads to the ignition coil terminals: Touch one lead of the ohmmeter to the positive terminal (+) of the ignition coil and the other lead to the negative terminal (-).
  5. Read the ohmmeter display: The ohmmeter display will show the resistance value in ohms. Record this value for comparison with the specified resistance range.
  6. Repeat the process for other ignition coils (if applicable): If you have multiple ignition coils, repeat steps 2-5 for each coil to check their primary resistance.

Note: The specified primary resistance range for ignition coils varies depending on the make and model of the vehicle. Refer to the vehicle’s service manual for the correct resistance values.

Symptom Possible Cause
Engine misfires or runs rough Faulty ignition coil with high or low primary resistance
Engine won’t start Ignition coil with open or extremely high primary resistance

Interpreting Primary Resistance Readings

The primary resistance reading of an ignition coil provides insight into the condition of its primary winding and the coil’s overall functionality. The reading should be within the specified range provided by the manufacturer. If the resistance falls outside this range, it could indicate issues with the coil.

Too Low Resistance

A primary resistance reading that is significantly below the specified range indicates a short circuit within the primary winding. This could be caused by a damaged insulating material or a short between the primary winding and the core. A shorted primary winding prevents the coil from generating the necessary magnetic field to induce voltage in the secondary winding, rendering it inoperable.

Too High Resistance

Conversely, a primary resistance reading that is significantly above the specified range suggests an open circuit within the primary winding. This could be caused by a broken wire or a damaged connection. When the primary winding is open, no current flows through the coil, which prevents it from generating any voltage in the secondary winding. As a result, the spark plug will not receive the necessary spark to ignite the air-fuel mixture.

Normal Resistance

A primary resistance reading that falls within the specified range indicates that the primary winding is in good condition. In this case, the coil should be able to generate the necessary magnetic field to induce voltage in the secondary winding and provide a spark to the spark plug.

Resistance Reading Interpretation
Below specified range Short circuit in primary winding
Above specified range Open circuit in primary winding
Within specified range Primary winding is in good condition

Checking Secondary Resistance

The secondary resistance of an ignition coil is typically in the range of 5,000 to 15,000 ohms. To measure the secondary resistance, follow these steps:

1. Disconnect the ignition coil from the spark plugs and distributor cap.

2. Set the ohmmeter to the highest resistance scale.

3. Touch one probe of the ohmmeter to the positive terminal of the ignition coil and the other probe to the negative terminal.

4. Read the resistance on the ohmmeter. The resistance should be within the specified range for the ignition coil.

Resistance Condition
Less than 5,000 ohms Ignition coil is shorted. Replace the ignition coil.
Greater than 15,000 ohms Ignition coil is open. Replace the ignition coil.
Within specified range Ignition coil is good.

Understanding Secondary Resistance Specifications

The secondary resistance of an ignition coil is a measure of the resistance encountered by the high-voltage current flowing through the secondary winding. This resistance is typically specified in kilo-ohms (kΩ) and varies depending on the specific ignition coil design and intended application. Generally, higher resistance values result in lower voltage output but increased spark energy, while lower resistance values produce higher voltage output with reduced spark energy.

The specified secondary resistance range for a given ignition coil is typically provided by the manufacturer and should be used as a reference when testing with an ohmmeter. If the measured secondary resistance falls outside of the specified range, it may indicate a problem with the coil that requires further investigation.

Resistance Range (kΩ) Spark Energy
0.5 – 1.0 Very low
1.0 – 2.0 Low
2.0 – 3.0 Medium
3.0 – 4.0 High
4.0 – 5.0 Very high

It’s important to note that the specified resistance range may vary between different types of ignition coils and should be referenced from the manufacturer’s specifications for the specific coil being tested.

Identifying Open or Shorted Secondary Windings

To detect an open or shorted secondary winding, you’ll need to measure the resistance across the secondary terminals of the ignition coil. Follow these steps:

1. Set Your Ohmmeter to a High Resistance Scale

Typically, the resistance of a secondary winding ranges from 5,000 to 50,000 ohms. Choose a scale that offers enough range to accommodate these values.

2. Ground the Ohmmeter’s Negative Lead

Connect the negative lead of your ohmmeter to a good ground point on the vehicle’s engine or chassis.

3. Insert the Positive Lead into the Coil Tower

Push the positive lead of your ohmmeter into the center of the coil tower, where the high-tension spark plug wire connects.

4. Read the Resistance Value

Observe the reading on the ohmmeter’s display. The resistance should be within the specified range for the ignition coil. If it reads “OL,” it indicates an open circuit, while a reading close to zero suggests a short circuit.

5. Inspect the Spark Plug Wires

If you suspect an open or shorted secondary winding, check the spark plug wires thoroughly. Look for signs of damage, wear, or loose connections.

6. Compare Measured Resistance to Ignition Coil Specifications

Ignition Coil Type Secondary Resistance Range (Ohms)
Distributor Ignition Coil 5,000 – 15,000
Coil-on-Plug Ignition Coil 7,000 – 25,000
Waste Spark Ignition Coil 10,000 – 35,000
Electronic Ignition Coil 12,000 – 40,000
High-Performance Ignition Coil 15,000 – 50,000

Refer to this table to compare your measured resistance values to the specified ranges for different ignition coil types. Deviations from the expected ranges may indicate a faulty ignition coil.

Testing for Continuity

Step 1: Set the Ohmmeter to the Continuity Setting. Locate the continuity setting on your ohmmeter, typically denoted by a musical note or ohm symbol with an arrow through it. Set the dial to this setting.

Step 2: Connect the Ohmmeter to the Ignition Coil Terminals. Touch one probe of the ohmmeter to the “positive” terminal of the ignition coil and the other probe to the “negative” terminal.

Step 3: Observe the Ohmmeter Reading. If the ohmmeter displays a low resistance reading (typically below 1 ohm), it indicates continuity, meaning the electrical circuit between the terminals is complete.

Step 4: Reverse the Ohmmeter Leads. Switch the probes of the ohmmeter (positive to negative, and vice versa) and repeat Steps 2 and 3. The ohmmeter should still display a low resistance reading.

Step 5: Test the Individual Coils. If your ignition coil has multiple coils, test each coil individually by disconnecting them from the spark plugs and repeating Steps 2-4 for each coil.

Step 6: Check for Intermittent Continuity. Gently wiggle or tap the ignition coil while observing the ohmmeter reading. If the reading fluctuates or breaks intermittently, it may indicate a loose connection or damaged insulation.

Step 7: Troubleshooting Intermittent Continuity. If you suspect intermittent continuity, visually inspect the ignition coil for any loose connections or damage. If none is found, use a multimeter to check the voltage supply to the coil. A low voltage supply can cause intermittent continuity issues.

Table: Ohmmeter Readings for Ignition Coil Continuity Testing

Reading Interpretation
Low resistance (below 1 ohm) Continuity is present
High resistance (above 1 ohm) Continuity is not present
Intermittent reading Possible loose connection or damaged insulation

Troubleshooting Ignition Coil Failure

Checking Primary Resistance

Remove the ignition coil from the engine. Disconnect the wires from the coil’s terminals. Connect an ohmmeter to the primary terminals of the coil, which are usually marked with a “+” and a “-“. The normal resistance range for a primary winding is typically between 0.4 and 2 ohms.

Checking Secondary Resistance

Connect the ohmmeter to the secondary terminals of the coil, which are usually located on the top of the coil. The normal resistance range for a secondary winding is typically between 5,000 and 15,000 ohms.

Checking Spark Plug Wires

Inspect the spark plug wires for damage or cracks. Replace any damaged wires.

Checking Distributor Cap and Rotor

Remove the distributor cap and inspect it for cracks or carbon buildup. Clean or replace the cap and rotor if necessary.

Checking Ignition Module

If the ignition coil, spark plug wires, and distributor cap and rotor are all in good condition, the problem may be with the ignition module. Test the ignition module according to the manufacturer’s instructions.

Checking Ignition Switch

Turn the ignition switch to the “on” position and check for power at the ignition coil. If there is no power, the problem may be with the ignition switch.

Checking Battery and Charging System

Make sure that the battery is fully charged and that the charging system is functioning properly. A weak battery or a malfunctioning charging system can cause ignition problems.

Additional Tests

* Spark Test: Disconnect a spark plug wire from a spark plug and hold it close to the engine block. Have someone crank the engine and look for a spark. If there is no spark, the problem may be with the ignition coil, spark plug wire, or distributor.
* Coil Peak Voltage Test: Use a coil peak voltage tester to measure the voltage output of the ignition coil. The peak voltage should be at least 20,000 volts.

Symptom Possible Cause
Engine misfires or stalls – Faulty ignition coil
– Damaged spark plug wires
– Worn distributor cap or rotor
– Faulty ignition module
– Weak battery or charging system

Additional Diagnostics for Ignition Coil Malfunctions

If the ohmmeter tests indicate a malfunctioning ignition coil, further diagnostics can help pinpoint the specific issue:

Visual Inspection

Examine the ignition coil for any visible damage, such as cracks, burns, or loose connections. Also, check the wiring harness for any signs of wear or damage.

Spark Test

To perform a spark test, remove the spark plug wire from the ignition coil and hold it close to the engine block while cranking the engine. If a strong spark is present, the ignition coil is likely functioning properly. However, a weak or absent spark may indicate a problem with the ignition coil.

Dwell Test

A dwell test measures the amount of time the ignition coil spends charging. To perform this test, connect a dwell meter to the ignition coil and crank the engine. The dwell time should fall within the manufacturer’s specifications. If the dwell time is too long or too short, it may indicate a problem with the ignition coil.

Substitution Test

If other diagnostic tests are inconclusive, a substitution test can be performed. Borrow a known-good ignition coil and install it on the vehicle. If the engine starts and runs smoothly, the original ignition coil is likely faulty.

Engine Performance Monitoring

Monitor the engine’s performance while driving. If the engine hesitates or misfires under acceleration, it may indicate a problem with the ignition coil. Also, look for any unusual noises or vibrations coming from the engine.

Scan Tool Diagnostics

Some vehicles have on-board diagnostic systems that can detect ignition coil malfunctions. Use a scan tool to retrieve any stored trouble codes that may indicate a problem with the ignition coil.

Ignition Module Test

If the ignition coil is part of an ignition module, test the ignition module as well. The ignition module may be faulty even if the ignition coil checks out okay.

Distributor Cap and Rotor Inspection

If the vehicle has a distributor, inspect the distributor cap and rotor for any cracks, burning, or corrosion. A faulty distributor cap or rotor can prevent the ignition coil from firing properly.

Fuel Pressure Test

Although not directly related to the ignition coil, a low fuel pressure can cause engine misfires that may mimic ignition coil malfunctions. Perform a fuel pressure test to rule out this possibility.

Safety Precautions When Testing Ignition Coils

Before beginning any testing, adhere to these safety precautions to ensure your personal safety and prevent damage to the ignition coil:

1. Wear Protective Gear

Don your safety glasses, gloves, and flame-retardant clothing to protect yourself from potential electrical hazards, burns, and arc flashes.

2. Disconnect Power Source

Locate the battery and disconnect the negative terminal to isolate the ignition system from the power source. Wait for at least 15 minutes for capacitors to discharge.

3. Allow Cooling

Ignition coils can become extremely hot during operation. Before touching them, allow them to cool down sufficiently to prevent burns.

4. Use Insulated Tools

Utilize insulated tools with rubber handles to minimize the risk of electrical shocks. Ensure that the insulation is in good condition before use.

5. Test in a Well-Ventilated Area

Ignition coils can emit potentially harmful gases during testing. Conduct your testing in an open and well-ventilated area to minimize exposure to these fumes.

6. Handle with Care

Avoid dropping or mishandling ignition coils, as they are sensitive and can be easily damaged. Handle them firmly but gently to prevent damage.

7. Avoid Contact with Metal

Keep ignition coils away from any metal surfaces, such as tools or test equipment, to prevent short circuits and electrical hazards.

8. Use Proper Meter Settings

Ensure that your ohmmeter is set to the correct resistance range for testing ignition coils. Refer to the manufacturer’s instructions for specific settings.

9. Test in Series

Connect your ohmmeter in series with the ignition coil. This will provide an accurate reading of the coil’s resistance without introducing any parallel paths.

10. Check for Continuity and Resistance

Perform a continuity check between the primary and secondary terminals. A high resistance or open circuit indicates a faulty ignition coil. The primary resistance should typically fall within 0.5 to 1.5 ohms, while the secondary resistance can range from 5,000 to 25,000 ohms. Refer to the manufacturer’s specifications for specific values.

How to Check Ignition Coil with an Ohm Meter

An ignition coil is a component in a vehicle’s ignition system that converts electrical energy from the battery into high-voltage energy required to create a spark at the spark plugs. A faulty ignition coil can lead to various engine problems, such as difficulty starting, misfiring, or stalling. Using an ohm meter to test the ignition coil can help determine if it is functioning correctly.

Here’s a step-by-step guide on how to check an ignition coil with an ohm meter:

  1. Disconnect the negative terminal of the battery for safety precautions.
  2. Locate the ignition coil. It is usually mounted on the top of the engine or near the spark plugs.
  3. Identify the terminals on the ignition coil. There are typically two terminals: the primary winding terminal and the secondary winding terminal.
  4. Set your ohm meter to the lowest resistance scale.
  5. Touch one probe of the ohm meter to the primary winding terminal and the other probe to the secondary winding terminal.
  6. Read the resistance value displayed on the ohm meter.

People Also Ask

What is a normal resistance reading for an ignition coil?

The normal resistance reading for an ignition coil varies depending on the make and model of the vehicle. Typically, the primary winding should have a resistance of 0.5 to 1.5 ohms, while the secondary winding should have a resistance of 5,000 to 15,000 ohms.

What if the resistance reading is not within the normal range?

If the resistance reading is significantly lower or higher than the normal range, it indicates a faulty ignition coil. A coil with very low resistance may cause a short circuit, while a coil with very high resistance may not generate enough voltage to produce a spark.

Can I check the ignition coil without removing it from the engine?

Yes, it is possible to check the ignition coil without removing it from the engine. However, it may be more difficult to access the terminals and get accurate readings.

4 Easy Steps: How to Test an Ignition Coil with a Multimeter

4 Easy Steps: How to Test an Ignition Coil with a Multimeter
An ignition coil is a critical component in an internal combustion engine’s ignition system, responsible for converting low-voltage current from the battery into high-voltage electricity necessary to create a spark at the spark plugs. A faulty ignition coil can lead to a range of engine problems, including misfiring, rough idling, and difficulty starting.

Testing an ignition coil with a multimeter is a straightforward process that can help you determine if the coil is malfunctioning. Before you begin, ensure you have a multimeter set to the appropriate resistance setting and follow safety precautions such as wearing gloves and eye protection. Start by disconnecting the negative terminal of the battery to prevent electrical shock. Then, locate the ignition coil, typically situated near the engine’s distributor or spark plugs.

Once you have identified the ignition coil, follow these steps:

1. Disconnect the electrical connectors from the ignition coil.
2. Set your multimeter to the resistance setting (usually denoted by the Greek letter “Omega”).
3. Touch one probe of the multimeter to the positive terminal of the ignition coil and the other probe to the negative terminal.
4. The multimeter should display a reading within the specified range for your particular ignition coil (refer to the manufacturer’s specifications).
5. If the multimeter reading is significantly lower or higher than the specified range, the ignition coil may be faulty and should be replaced.

Introduction to Ignition Coils

Ignition coils are crucial components in an internal combustion engine’s ignition system. They transform the vehicle’s low-voltage electrical current into high voltage, enabling the spark plugs to ignite the air-fuel mixture in the engine’s cylinders. Ignition coils consist of a primary winding and a secondary winding, typically wrapped around an iron core. The primary winding is connected to the vehicle’s battery, while the secondary winding is connected to the spark plugs. When a signal is sent from the ignition module, the primary winding becomes energized and creates a magnetic field within the coil. The collapsing magnetic field induces a high voltage in the secondary winding, which then travels to the spark plugs, creating the spark necessary for combustion.

Ignition coils can fail over time due to various factors such as heat, vibration, or electrical overload. A faulty ignition coil can lead to difficulty starting the engine, misfires, reduced engine power, and poor fuel economy. Therefore, it is essential to check the condition of the ignition coils periodically to ensure proper engine performance.

Types of Ignition Coils

Type Description
Conventional Ignition Coils Single ignition coil serves multiple cylinders
Coil-on-Plug (COP) Ignition Coils Separate ignition coil for each cylinder, mounted directly on the spark plug
Coil-Near-Plug (CNP) Ignition Coils Ignition coil located near the spark plug, but not directly mounted on it

Troubleshooting Ignition Issues

Ignition issues can be frustrating, especially when you’re in a hurry or far from home. There are several potential causes of ignition problems, including faulty spark plugs, ignition coils, or electrical issues. One way to test your ignition coil is with a multimeter.

**Note:** Always refer to your vehicle’s service manual for specific instructions when troubleshooting ignition issues.

Testing the Ignition Coil with a Multimeter

1. Gather Your Tools and Identify the Ignition Coil

You’ll need a multimeter, a wrench or socket set, and a spark plug tester. Locate the ignition coil, which is usually located near the engine’s distributor cap or spark plugs.

2. Testing the Ignition Coil’s Primary Circuit

Warning: Disconnect the negative battery terminal before proceeding.

  1. Set the multimeter to its ohms (Ω) setting, which measures resistance.
  2. Disconnect the wiring harness connector from the ignition coil.
  3. Connect one multimeter lead to the positive (+) terminal of the ignition coil and the other lead to the negative (-) terminal.
  4. The multimeter should display a resistance reading between 0.5 and 2.0 ohms. If the reading is significantly higher or lower, the ignition coil may be faulty.

3. Testing the Ignition Coil’s Secondary Circuit

  1. Set the multimeter to its volts (V) setting, which measures voltage.
  2. Reconnect the wiring harness connector to the ignition coil.
  3. Connect one multimeter lead to the center terminal of the ignition coil and the other lead to a ground point on the engine.
  4. Have an assistant crank the engine while you observe the multimeter. You should see a voltage reading of several thousand volts. If the reading is significantly lower, the ignition coil may be faulty.
  5. 4. Interpreting the Results

    If the ignition coil fails either of these tests, it is likely faulty and should be replaced. Before replacing the ignition coil, ensure that any other potential causes of the ignition issues, such as spark plugs or electrical connections, have been ruled out.

    Test Normal Reading Possible Issue if Reading is Abnormal
    Primary Circuit Resistance 0.5 to 2.0 ohms Faulty ignition coil
    Secondary Circuit Voltage Several thousand volts Faulty ignition coil, spark plug, or electrical connection

    Identifying a Faulty Ignition Coil

    Identifying a faulty ignition coil can be crucial for maintaining a smooth-running engine. Here are a few symptoms that may indicate a problem with the ignition coil:

    Misfiring and Rough Idling

    Ignition coil problems can lead to misfiring, causing the engine to run roughly or sputter. This is because a faulty coil may not deliver the necessary voltage to the spark plug, resulting in incomplete combustion and reduced engine performance.

    Difficulty Starting

    A failing ignition coil can make it difficult to start the engine. When the coil is unable to generate a strong enough spark, the engine may struggle to turn over or may not start at all. This is particularly noticeable during cold starts, when the engine requires more voltage to ignite.

    Reduced Engine Power

    If the ignition coils are not functioning properly, the engine may experience reduced power and acceleration. This is because the lack of a strong spark can lead to inefficient combustion, resulting in lower engine output and performance.

    Backfiring

    In some cases, a faulty ignition coil can cause backfiring, which occurs when the air-fuel mixture in the cylinder ignites prematurely. This can be due to a weak spark or improper timing, resulting in a loud popping sound from the exhaust system.

    Illuminated Check Engine Light

    Many modern vehicles are equipped with an engine control module (ECM) that monitors engine performance. When the ECM detects a problem with the ignition coil, it may illuminate the check engine light on the dashboard, indicating the need for further diagnosis.

    Checking for Spark

    To test for spark, follow these steps:

    Step Action
    1 Locate the ignition coil.
    2 Disconnect the spark plug wire from the spark plug.
    3 Connect a spark tester to the spark plug wire.
    4 Ground the spark tester to the engine block.
    5 Start the engine and observe the spark tester.

    If the spark tester generates a strong, blue spark, the ignition coil is likely functioning correctly. However, if the spark is weak or intermittent, the ignition coil may be faulty and require replacement.

    Multimeter Basics for Coil Testing

    What is a Multimeter?

    A multimeter is a versatile electrical testing tool that combines the capabilities of a voltmeter, ammeter, and ohmmeter. It allows for a wide range of electrical measurements, including voltage, current, and resistance.

    Multimeter Modes

    Multimeters typically offer three main modes of operation: voltage measurement, current measurement, and resistance measurement. Each mode requires a specific set of test leads and connection points on the multimeter.

    Measuring Resistance with a Multimeter

    To measure resistance with a multimeter, set it to the ohms (Ω) mode. Connect the positive test lead to one end of the coil and the negative test lead to the other end. The multimeter will display the resistance value in ohms.

    Interpreting Resistance Readings for Ignition Coils

    The resistance of a good ignition coil typically falls within a specific range. Most primary coil windings range from 0.4 to 2 ohms, while secondary coil windings range from 5,000 to 20,000 ohms. Deviations from these ranges may indicate a problem with the coil.

    Coil Type Resistance Range
    Primary Winding 0.4 – 2 Ω
    Secondary Winding 5,000 – 20,000 Ω

    Testing Primary Resistance

    To test the ignition coil’s primary resistance, follow these steps:

    1. Set Multimeter to Resistance Mode

    Switch your multimeter to the ohms (Ω) scale, typically ranging from 200 ohms to 20k ohms.

    2. Identify Ignition Coil Terminals

    Locate the two terminals on the ignition coil, typically labeled “+” and “-“. These terminals are where the power supply and ignition switch connect.

    3. Touch Probes to Terminals

    Touching the multimeter probes to the terminals, ensure a proper connection. The display will show the resistance value between the two terminals.

    4. Compare to Specification

    Check your ignition coil’s specifications for the expected primary resistance range. Compare this range to the resistance value obtained from the multimeter.

    5. Analyze Results

    • Normal: Resistance falls within the specified range, indicating a functional primary winding.
    • Too Low: Resistance is significantly lower than the specified range, indicating a short circuit in the primary winding.
    • Too High: Resistance is significantly higher than the specified range, indicating an open circuit in the primary winding.
    • Intermittent: The resistance reading fluctuates, indicating a loose connection or damaged primary winding.
    Primary Resistance Measurement Indication
    Within Specification Functional Primary Winding
    Significantly Lower Short Circuit
    Significantly Higher Open Circuit
    Fluctuates Loose Connection or Damaged Winding

    Measuring Secondary Resistance

    The secondary resistance of an ignition coil is the resistance of the secondary winding. This winding is responsible for creating the high voltage that is required to jump the spark plug gap. The secondary resistance can be measured using a multimeter.

    Step 1: Set the multimeter to the ohms setting.

    Step 2: Connect the black lead of the multimeter to the negative terminal of the ignition coil.

    Step 3: Connect the red lead of the multimeter to the positive terminal of the ignition coil.

    Step 4: Read the display on the multimeter. The reading should be between 0.5 and 1.0 ohms.

    Step 5: If the reading is not between 0.5 and 1.0 ohms, the ignition coil may be damaged and should be replaced.

    Step 6: Check the resistance of the secondary winding by connecting one probe of the multimeter to the positive terminal of the coil and the other probe to the negative terminal of the coil. The resistance should be between 0.5 and 1.0 ohms. If it is not, the coil is bad and should be replaced.

    Possible causes of ignition coil failure
    • Open circuit in the primary or secondary winding.
    • Shorted turns in the primary or secondary winding.
    • Damaged insulation between the primary and secondary windings.
    • Worn or damaged contacts in the distributor cap or rotor.

    Checking Spark Output

    To check the spark output of the ignition coil, follow these steps:

    1. Disconnect the spark plug wire from the spark plug.

    2. Connect the black lead of the multimeter to the metal body of the spark plug.

    3. Connect the red lead of the multimeter to the tip of the spark plug wire.

    4. Start the engine and observe the multimeter reading.

    Reading Result
    0 V No spark
    12 V Spark present

    5. If there is no spark, repeat steps 2-4 with the spark plug wire connected to a different spark plug.

    6. If there is still no spark, the ignition coil is likely faulty and should be replaced.

    7. To further test the ignition coil’s ability to produce a strong spark, you can use a spark tester. A spark tester is a device that creates a controlled spark between two electrodes. Connect the ignition coil’s output wire to the spark tester, then start the engine and observe the spark. A weak or intermittent spark indicates a faulty ignition coil.

    Interpreting Test Results

    1. Primary Resistance Reading

    An acceptable reading for primary resistance is typically between 0.4 and 2 ohms. Anything significantly higher could indicate a break in the coil.

    2. Secondary Resistance Reading

    Expected secondary resistance values vary depending on the ignition coil type. Consult a service manual for specific ranges.

    3. Primary Continuity

    Continuity between terminals 1 and 15 should exist. No continuity indicates an open circuit.

    4. Secondary Continuity

    Continuity should be measured between the central terminal and the spark plug wire terminal. No continuity points to an open circuit.

    5. Primary Ground Insulation

    An infinite resistance (no continuity) between terminals 1 and 15 and the coil body indicates proper insulation.

    6. Secondary Ground Insulation

    Similarly, infinite resistance between the central terminal and the coil body ensures proper insulation.

    7. Spark Plug Wire Terminal

    Continuity between the spark plug wire terminal and the coil body should be absent. Its presence indicates a short circuit.

    8. Dwell or Duty Cycle Test

    This test measures the time the ignition coil spends charging and discharging. A fully functional coil will have a dwell time within manufacturer specifications.

    Dwell Time Troubleshooting Guide

    Dwell Time Reading Possible Issue
    Extremely Short Coil primary circuit short
    Extremely Long Coil primary circuit open
    Intermittent Loose or faulty connections

    An oscilloscope can provide a more precise measurement of dwell time and duty cycle.

    Safety Precautions for Coil Testing

    Inspecting ignition coils is a common troubleshooting procedure, but to ensure your safety, it’s imperative to follow these precautions:

    1. Disconnect the vehicle’s battery: Before any testing, disconnect the negative terminal of the battery to prevent any electrical shocks or shorts.
    2. Wear appropriate gear: Insulated gloves and safety glasses should be worn throughout the process to protect against potential sparks or debris.
    3. Use caution around high voltages: Ignition coils handle high voltages. Avoid touching the terminals directly and use insulated tools to prevent electric shocks.
    4. Do not perform tests on a running engine: Working on a running engine can be dangerous. Always shut off the engine and allow it to cool before beginning testing.
    5. Check for cracks or damage: Before connecting the multimeter, visually inspect the coil for visible cracks or damage to the housing or terminals.
    6. Ensure proper ventilation: Ignition coil testing might release fumes or vapors. Ensure there is adequate ventilation in the work area to avoid inhalation of these substances.
    7. Avoid contact with hot surfaces: Ignition coils can become hot during operation. Allow them to cool down before handling.
    8. Use a multimeter with an appropriate range: Select a multimeter with a voltage range capable of measuring the high voltages present in ignition coils.
    9. Ground the test equipment: Connect the multimeter’s ground lead to a reliable ground point on the vehicle’s chassis to ensure accurate readings.
    10. Follow all manufacturer’s instructions carefully: Refer to the specific vehicle’s repair manual or the ignition coil manufacturer’s guidelines for correct testing procedures and precautions.

    Troubleshooting Primary Circuit Problems

    1. Check for power at the ignition coil’s positive terminal. Use the multimeter set to DC volts. Connect the black probe to the negative battery terminal and the red probe to the positive terminal of the ignition coil. You should see a reading of 12 volts.

    2. If there is no power at the positive terminal, check the fuses in the fuse box. Replace any blown fuses.

    3. Check for continuity in the primary circuit. Set the multimeter to ohms. Connect the black probe to the negative terminal of the battery and the red probe to the positive terminal of the ignition coil. You should see a reading of 0 ohms.

    4. If there is no continuity in the primary circuit, check the wiring harness for any breaks or shorts.

    Troubleshooting Secondary Circuit Problems

    5. Check for spark at the spark plugs. Remove the spark plug wires and insert a spark plug into each wire. Hold the spark plug against the cylinder head and crank the engine. You should see a spark jump from the spark plug to the cylinder head.

    6. If there is no spark at the spark plugs, check the ignition coil’s secondary circuit. Set the multimeter to ohms. Connect the black probe to the negative terminal of the coil and the red probe to the positive terminal of the coil. You should see a reading of 5,000 to 10,000 ohms.

    7. If the secondary circuit is open, replace the ignition coil.

    8. Check for a short to ground in the secondary circuit. Set the multimeter to ohms. Connect the black probe to the negative terminal of the coil and the red probe to the metal body of the car. You should see a reading of infinity.

    9. If there is a short to ground in the secondary circuit, check the wiring harness for any shorts.

    10. Check the ignition module. The ignition module controls the ignition coil. If the ignition module is faulty, it can cause the ignition coil to fail. To test the ignition module, you will need a scan tool. Connect the scan tool to the car’s diagnostic port and follow the on-screen instructions to test the ignition module.

    How To Test A Ignition Coil With Multimeter

    An ignition coil is a component of an internal combustion engine that provides the high voltage necessary to create an electric spark in the spark plugs. A multimeter is a device that can measure electrical properties such as voltage, current, and resistance. By using a multimeter, you can test an ignition coil to determine if it is functioning properly.

    To test an ignition coil with a multimeter, follow these steps:

    1. Set the multimeter to the ohms setting.
    2. Connect the positive lead of the multimeter to the positive terminal of the ignition coil.
    3. Connect the negative lead of the multimeter to the negative terminal of the ignition coil.
    4. Read the display on the multimeter.

    The resistance of a good ignition coil will typically be between 0.5 and 5 ohms. If the resistance is too low, the ignition coil may be shorted. If the resistance is too high, the ignition coil may be open.

    People Also Ask About How To Test A Ignition Coil With Multimeter

    Can you test an ignition coil without removing it?

    Yes, you can test an ignition coil without removing it. To do this, you will need to use a multimeter to measure the resistance of the coil. The resistance of a good ignition coil will typically be between 0.5 and 5 ohms.

    What are the symptoms of a bad ignition coil?

    The symptoms of a bad ignition coil can include:

    • Engine misfires
    • Difficulty starting the engine
    • Reduced engine power
    • Poor fuel economy

    How much does it cost to replace an ignition coil?

    The cost to replace an ignition coil can vary depending on the make and model of your vehicle. However, you can expect to pay between $50 and $200 for a new ignition coil.